Abstract

Controlling plasmonic properties of aliovalently doped semiconductor nanocrystals in mid-infrared (MIR) spectral region is of a particular current interest, because of their potential application in heat-responsive devices and near-field enhanced spectroscopies. However, a lack of detailed understanding of the correlations among the electronic structure of the host lattice, dopant ions, and surface properties hampers the development of MIR-tunable plasmonic nanocrystals (NCs). In this article, we report the colloidal synthesis and spectroscopic properties of two new plasmonic NC systems based on In2O3, antimony- and titanium-doped In2O3 NCs, and comparative investigation of their electronic structure using the combination of the Drude–Lorenz model and density functional theory. The localized surface plasmon resonances (LSPRs) lie at lower energies and have smaller bandwidths for Ti-doped than for Sb-doped In2O3 NCs with similar doping levels, indicating lower free electron density. Surprisingly, the Fermi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call