Abstract

Semiconductor nanocrystals (NCs) heavily doped with cation/anion vacancies or foreign metal ions can support localized surface plasmon resonance (LSPR) in the near-infrared (NIR) and mid-infrared (MIR) spectral wavelengths. Typically, nonstoichiometric copper sulfide Cu2−xS NCs with different x values (0 < x ≤ 1) have attracted numerous attention because of hole-based, particle size, morphology, hole density and crystal phase-dependent LSPR. In spite of excited development of methodology for LSPR manipulation, systematic LSPR tuning of Cu2−xS NCs with a special crystal phase has been limited. Herein, roxbyite Cu1.8S nanodisks (NDs) were selected as a model and their LSPR was readily tuned by particle size, hole density via chemical oxidation and reduction, self-assembly and disassembly in solution and plasmon coupling in multilayer films. Particle size, hole density and plasmon coupling severely affect their LSPR peak position and absorption intensity. Therefore, the ability of flexible LSPR tuning gifts roxbyite Cu1.8S NDs great potential in plasmonic applications, including photocatalysis, photothermal agent, two-photon photochemistry and many others in NIR and MIR regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.