Abstract
Various polygenic risk scores (PRS) methods have been proposed to combine the estimated effects of single nucleotide polymorphisms (SNPs) to predict genetic risks for common diseases, using data collected from genome-wide association studies (GWAS). Some methods require external individual-level GWAS dataset for parameter tuning, posing privacy and security-related concerns. Leaving out partial data for parameter tuning can also reduce model prediction accuracy. In this article, we propose PRStuning, a method that tunes parameters for different PRS methods using GWAS summary statistics from the training data. PRStuning predicts the PRS performance with different parameters, and then selects the best-performing parameters. Because directly using training data effects tends to overestimate the performance in the testing data, we adopt an empirical Bayes approach to shrinking the predicted performance in accordance with the genetic architecture of the disease. Extensive simulations and real data applications demonstrate PRStuning’s accuracy across PRS methods and parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.