Abstract

Tuning surface oxygen vacancies is important for oxide catalysts. Doping elements with different chemical valence states or different atomic radii into host oxides is a common method to create oxygen vacancies. However, the concentration of oxygen vacancies in oxide catalysts is still limited to the amount of foreign dopants that can be tolerated (generally less than 10% atoms). Herein, a principle of engineering the configurational entropy to tune oxygen vacancies was proposed. First, the positive relationship between the configuration entropy and the formation energy of oxygen vacancies (Eov) in 16 model oxides was estimated by a DFT calculation. To verify this, single binary oxides and high-entropy quinary oxides (HEOs) were prepared. Indeed, the concentration of oxygen vacancies in HEOs (Oβ/α = 3.66) was higher compared to those of single or binary oxides (Oβ/α = 0.22-0.75) by O1s XPS, O2-TPD, and EPR. Interestingly, the reduction temperatures of transition metal ions in HEOs were generally lower than that in single-metal oxides by H2-TPR. The lower Eov of HEOs may contribute to this feature, which was confirmed by in situ XPS and in situ XRD. Moreover, with catalytic CO/C3H6 oxidation as a model, the high-entropy (MnCuCo3NiFe)xOy catalyst showed higher catalytic activity than single and binary oxides, which experimentally verified the hypothesis of the DFT calculation. This work may inspire more oxide catalysts with preferred oxygen vacancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call