Abstract
Robust massless Dirac states with helical spin textures were realized at the boundaries of topological insulators such as van der Waals (vdW) layered Bi2Se3 family compounds. Topological properties of massless Dirac states can be controlled by varying the film thickness, external stimuli, or environmental factors. Here, we report single-crystal-quality growth of ultrathin Bi2Se3 films on flexible polyimide sheets and manipulation of the Dirac states by varying the vdW gap. X-ray diffraction unambiguously demonstrates that under uniaxial bending stress the vdW gap substantially changes with interatomic-layer distances unaltered. Terahertz and photoelectron spectroscopy indicate tuning of the number of quantum conducting channels and of work function, by the stress, respectively. Surprisingly, under compressive strain, transport measurements reveal dimensional crossover and suppressed weak antilocalization. First-principles calculations support the observation. Our findings suggest that variation of vdW gap...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.