Abstract

A series of [AlL(H(2)O)(2)(NO(3))] complexes, with L standing for an ester substituted salophen-type ligand, has been synthesized, and the luminescence properties have been investigated. These derivatives differ by the nature of the ester-R group introduced at the C5 position of their salicylidene rings (i.e., phenyl, 7a,a'; naphthyl, 7b,b'; pentafluorophenyl, 7c,c'; and p-nitrophenyl, 7d) and by the bis-imino bridge (i.e., 1,2- phenylene, 7a-d; and 1,2-naphthalene, 7a'-c'). All the complexes are characterized by luminescence in the blue range, the chemical diversity having no effect on the emission wavelength (480-485 nm). However, the emission efficiency was found to be strongly dependent on the Schiff-base ligand with quantum yields ranging from ϕ = 22% to 44%, the highest values being for the salophen derivatives with the electron-withdrawing ester-R groups (7a, 34%; 7a', 23%; 7b, 31%; 7b', 22%; 7c, 40%; 7c', 29%, and 7d, 44%). Both the electrochemical data and DFT calculations show that the HOMO-LUMO band gap is modified as a function of the ester R group (from 2.92 to 3.16 eV, based on the redox potentials). The crystal structures for the N,N'-bis(5-(phenoxycarbonyl)salicylidene)-1,2-phenylenediamine and the N,N'-bis(5-(p-nitrophenoxycarbonyl)salicylidene)-1,2-phenylenediamine aluminum complexes (7a and 7d) are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.