Abstract

Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ-, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•- after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•- through thermodynamically feasible reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.