Abstract

New dinuclear ruthenium or osmium complexes with cyclometalated bonds in either tridentate bridging (BL) or ancillary ligands (L), [(L)M(BL)M(L)] (where M = Ru, Os; L = bis(N-methylbenzimidazolyl)pyridine, -benzene; BL= tetrapyridylpyrazine (tppz), -benzene (tpb)), were synthesized, and their mixed-valence-state characteristics were investigated. All of the complexes showed successive one-electron redox processes, each of which correspond to M(II/III) (M = Ru, Os) or ligand reduction waves. In addition, an M(III/IV) couple was observed in cyclometalated [M2(bis(benzimidazolyl)benzene)2(BL)] complexes (M = Ru, Os). Effects of the cyclometalated bonds on the redox behaviors and the accessibility to the mixed-valence M(II)–M(III) dinuclear complexes are discussed. Introduction of a cyclometalated bond induced a large negative potential shift in the redox potentials of dinuclear ruthenium and osmium complexes, depending on either bridging or ancillary sites of the cyclometalated bonds: the change falls within...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.