Abstract

To determine the in vitro susceptibility and cellular uptake for a series of dinuclear ruthenium(II) complexes [{Ru(phen)(2)}(2){μ-bb(n)}](4+) (Rubb(n)), and the mononuclear complexes [Ru(Me(4)phen)(3)](2+) and [Ru(phen)(2)(bb(7))](2+) against Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli and Pseudomonas aeruginosa. The in vitro susceptibility was determined by MIC and MBC assays, and time-kill curve experiments, while the cellular uptake was evaluated by monitoring the fluorescence of the complexes remaining in the supernatant of the cultures after incubation for various periods of time, flow cytometry and confocal microscopy. Rubb(12) and Rubb(16) are highly active, with MIC and MBC values of 1-2 mg/L (0.5-1 μM) for the two Gram-positive strains and 2-4 mg/L for E. coli and 16-32 mg/L for P. aeruginosa. Rubb(16) showed equal or better activity (on a molar basis) to gentamicin and ampicillin for all strains apart from P. aeruginosa. The relative MBC to MIC values indicated that Rubb(12) and Rubb(16) are bactericidal, and from the time-kill curve experiments, the ruthenium complexes can kill the bacteria within 2-6 h. The cellular uptake studies demonstrated that the observed antimicrobial activity is correlated with the level of uptake of the ruthenium complexes. Confocal microscopy confirmed the cellular uptake of Rubb(16), and tentatively suggested that the ruthenium complex is localized in the bacteria. The inert dinuclear ruthenium(II) complexes Rubb(12) and Rubb(16) have potential as new antimicrobial agents. The structure of the dinuclear ruthenium complexes can be readily further modified in order to increase their selectivity for bacteria over human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.