Abstract

Water contamination is increasingly an important issue in developing and under developed countries. The main cause of water contaminations are industrial dyes and toxic chemicals. Hence many technologies are being developed to de-contaminate the toxic materials. The photocatalytic de-contamination of dyes is an effective and simple technology to purify water. Among various photocatalysts, the transition metal based oxides (TiO2, NiO and ZnO) being the state-of art photocatalytic material. But, the metal oxides have large band gap and suffers from the fact that it predominantly absorbs the Ultra Violet region of irradiation. But, any viable photocatalytic technology demands absorption in the visible light region, so as to utilize the cost-free sun light. Herein, we tune and utilize the metal oxides through the integration of Ag metal nanoparticles. The synthesized materials were completely analyzed by PXRD, HRTEM, UV, XPS and BET instruments. All TiO2/Ag, NiO/Ag and ZnO/Ag nanocomposites were subjected to photocatalytic degradation using visible light. The nanocomposites acted as photocatalyst and degrade the colorful methyl orange and colorless toxic 4-chlorophenol. Among the aforementioned three samples, TiO2/Ag exhibited best performance than ZnO/Ag and NiO/Ag. We attributed the enhancement of photocatalytic activity due to Plasmons assistance and nanoscale regime of photocatalyst. In summary, we tuned the metal oxide photocatalytic performance using the Ag nanoparticle surface Plasmon resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call