Abstract

Temperature-responsive hydrogel with a lower critical solution temperature (LCST) close to human body temperature was prepared. Crosslinked N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) copolymer networks were synthesized at various monomer ratios in the presence of ammonium persulfate (APS), N,N′-methylenebisacrylamide (NMBA) and N,N,N′,N′-tetramethylethylenediamine (TEMED) via a redox polymerization method. The resulting hydrogels possessed thermo- and pH-responsive characteristics. They were characterized in terms of swelling ratio, volume change, water uptake and diffusivity, water vapor uptake and diffusivity, and phase transition temperature. The water liquid and vapor diffusion coefficients for all the synthesized hydrogels were higher than the literature data, implying higher rates for drug release. The LCST of the hydrogel increased with higher AAc content in the copolymer. The gel containing 1.8% AAc exhibited an LCST similar to human body temperature, demonstrating a potential use in drug controlled release and biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.