Abstract
This work explored the potential of utilizing Lanthanum doped tin oxide Sn1−xLaxO2 (x = 0.01 to 0.1) based Metal-Semiconductor-Metal Ohmic photoconductors for optical memory applications making use of the persistent photoconductivity (PPC) property. The structural, optical, and electrical properties of Sn1−xLaxO2 thin films deposited on glass substrates using the spray pyrolysis method, with a focus on the impact of lanthanum concentration on the photoresponse characteristics was investigated. Raman spectroscopy confirmed the presence of oxygen vacancies and nanometric grain size in the films along with the typical Raman active modes of tin oxide. The Sn4+ and La3+ oxidation states in Sn1−xLaxO2 as well as the contributions from lattice oxygen and oxygen vacancies were identified using XPS. Photoluminescence studies revealed emissions in the UV, violet, blue, and yellow regions, corresponding to tin interstitials, oxygen vacancies, and other defects, with intensity variations based on La concentration. All films exhibited n-type conductivity, with La content influencing both resistivity and carrier concentration. Photoconductivity measurements demonstrated enhanced photocurrent under UV illumination, with La doping affecting energy levels and defect states. The Sn0.90La0.10O2 film possessed a photocurrent retention of nearly 64 % within a span of 104 s, showing that higher concentration of La favoured the enhancement of retention of photocurrent for a comparatively longer duration. The significant persistent photoconductivity requires the conditions like optically active materials, a built-in electric field to separate electron-hole pairs, and defect states to trap carriers, which are all met by the prepared Sn1-xLaxO2 photoconductor with higher La doping levels, confirming the suitability of these films for practical use as optical non-volatile memory elements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have