Abstract

Although the preparation of coal-based carbon nanotubes (CNTs) has been realized in many studies, the relationship between carbon source structure of coal and CNT growth has not been studied in depth. In this study, we used lignite and KOH as raw material and catalyst and tuned lignite structure via hydrothermal modification to promote the formation of CNTs during catalytic pyrolysis. The main carbon source of CNTs was explored from the change of coal structure and pyrolysis characteristics. The results indicate that the CNT yield of lignite pyrolysis products is only 2.39%, but the CNT yield increases significantly after lignite was hydrothermally modified in a subcritical water-CO system. The graphitization degree, the order degree, and CNT content increase continuously with the increase in modification temperature, and C-M340 has the highest CNT content of 9.41%. Hydromodification promotes the rearrangement of aromatic carbon structures to generate more condensed aromatic rings linked by short aliphatic chains and aromatic ether bonds. The variation of these structures correlates well with the formation of CNTs and leads to the change in the carbon source components released during coal pyrolysis. Compared to lignite, modified coal releases more aromatic compounds, especially polycyclic aromatic hydrocarbons with ≥3 rings and phenols during catalytic pyrolysis, which is conducive to the transformation into carbon clusters and provides carbon sources for CNT growth. In addition, modified coal releases a slightly more carbon-containing gas (CH4 and CO) than lignite, which has a limited effect on the growth of CNTs. This study provides a novel and efficient method for enhancing the growth of CNTs by a molecular tailoring strategy of coal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call