Abstract
The ability to tune the interfacial thermal conductance of GaN/AlN heterojunction nanowires (NWs) with a core/shell structure is shown using molecular dynamics and non-equilibrium Green’s functions method. In particular, an increase in the shell thickness leads to a significant improvement of interfacial thermal conductance of GaN/AlN core/shell NWs. At room temperature (300 K), the interfacial thermal conductance of NWs with specific core/shell ratio can reach 0.608 nW K−1, which is about twice that of GaN/AlN heterojunction NWs due to the weak phonon scattering and phonon localization. Moreover, changing the core/shell type enables one to vary interfacial thermal conductance relative to that of GaN/AlN heterojunction NWs. The results of the study provide an important guidance for solving the thermal management problems of GaN-based devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.