Abstract

Nucleobase mimicking small molecules able to reconfigure DNA are a recently discovered strategy that promises to extend the structural and functional diversity of nucleic acids. However, only simple, unfunctionalized molecules such as cyanuric acid and melamine have so far been used in this approach. In this work, we show that the addition of substituted cyanuric acid molecules can successfully program polyadenine strands to assemble into supramolecular fibers. Unlike conventional DNA nanostructure functionalization, which typically end-labels DNA strands, our approach incorporates functional groups into DNA with high density using small molecules and results in new DNA triple helices coated with alkylamine or alcohol units that grow into micrometer-long fibers. We find that small changes in the small molecule functional group can result in large structural and energetic variation in the overall assembly. A combination of circular dichroism, atomic force microscopy, molecular dynamics simulations, and a new thermodynamic method, transient equilibrium mapping, elucidated the molecular factors behind these large changes. In particular, we identify substantial DNA sugar and phosphate group deformations to accommodate a hydrogen bond between the phosphate and the small-molecule functional groups, as well as a critical chain length of the functional group which switches this interaction from intra- to interfiber. These parameters allow the controlled formation of hierarchical, hybrid DNA assemblies simply through the addition and variation of small, functionalized molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call