Abstract

Approximate reasoning in a fuzzy system is concerned with inferring an approximate conclusion from fuzzy and vague inputs. There are many ways in which different forms of conclusions can be drawn. Fuzzy sets are usually represented by fuzzy membership functions. These membership functions are assumed to have a clearly defined base. For other fuzzy sets such as intelligent, smart, or beautiful, etc., it would be difficult to define clearly its base because its base may consist of several other fuzzy sets or unclear nonfuzzy bases. A method to handle this kind of fuzzy set is proposed. A fuzzy neural network (FNN) is also proposed to tune knowledge representation parameters (KRPs). The contributions are that we are able to handle a broader range of fuzzy sets and build more powerful fuzzy systems so that the conclusions drawn are more meaningful, reliable, and accurate. An experiment is presented to demonstrate how our method works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.