Abstract
Biobased plastics are fully or partially made from biological resources but are not necessarily biodegradable or compostable. Poly (lactic acid) (PLA), one of the most diffused bioplastics, is compostable in industrial environments, but improving degradation in home composting conditions, in soil and in seawater could be beneficial for improving its end of life and general degradability. Blends obtained by the extrusion of PLA with different amounts of poly (butylene succinate-co-adipate) (PBSA) or poly (caprolactone) (PCL) were characterized in terms of their home composting, soil, marine and freshwater biodegradation. The blending strategy was found to be successful in improving the home compostability and soil compostability of PLA. Thanks to the correlations with morphological characterization as determined by electron microscopy, it was possible to show that attaining an almost co-continuous phase distribution, depending on the composition and melt viscosity of the blend components, can enhance PLA degradation in home composting conditions. Tests in marine and freshwater were also performed, and the obtained results showed that in marine conditions, pure PLA is degradable. A comparison of different tests evidenced that salt dissolved in marine water plays an important role in favoring PLA's degradability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.