Abstract

Abstract Tissue engineering is the most fascinating domain of medical technology and has emerged as a promising alternative approach in the treatment of malfunctioning or lost organs where patients are treated by using their own cells, grown on a polymer support so that a tissue part is regenerated from the natural cells. This support is known as scaffold and is needed to serve as an adhesive substrate for the implanted cells and a physical support to guide the formation of the new organs. In addition to facilitating cell adhesion, promoting cell growth, and allowing the retention of differentiated cell functions, the scaffold should be biocompatible, biodegradable, highly porous with a large surface/volume ratio, mechanically strong, and malleable. The scaffold degrades while a new organ or tissue is formed. A number of three-dimensional porous scaffolds fabricated from various kinds of biodegradable materials have been developed. Bioabsorbable polymers have been identified as alternative materials for biomedical applications, since these polymers are degraded by simple hydrolysis to products that can be metabolized by the human body. With their excellent biocompatibility, poly-lactones such as poly-lactic acid (PLA), poly-glycolic acid (PGA), and poly-caprolactone (PCL), as well as their copolymers are becoming the most commonly used synthetic biodegradable polymers as fixation devices materials for biomedical devices. Among the biomaterials (biopolymers) used in the medical field, the poly (lactic acid) (PLA) has received significant attention. Poly-lactic acid (PLA) is at present one of the most promising biodegradable polymers for this purpose and has convincingly demonstrated the proof of concept for using in bioabsorbable polymer as bone fixation devices, owing to its mechanical property profile, thermoplastic possibility and biological properties, such as biocompatibility and biodegradability. It is produced from lactic acid, a naturally occurring organic acid that can be produced by fermentation. The objective of this study was to investigate the synthesis of PLA in a laboratory scale in order to characterize it in accordance with the needs for biomedical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call