Abstract
The O2 binding affinity of a series of dicobalt(II) complexes can be tuned between p(O2)50% = 2.3 × 10(-3) and 700 × 10(-3) atm at 40 °C by varying the number of H and Cl atoms in the bridging acetato ligands of [Co2(bpbp)(CH(3-n)ClnCO2)(CH3CN)2](2+), where bpbp(-) = 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolate and n = {0, 1, 2, 3}. O2 binds most strongly to the deoxy complex containing the acetato bridge and the O2 affinity decreases linearly as the number of Cl atoms is increased from 0 to 3 in [Co2(bpbp)(O2)(CH3CO2)](2+), [Co2(bpbp)(O2)(CH2ClCO2)](2+), [Co2(bpbp)(O2)(CHCl2CO2)](2+) and [Co2(bpbp)(O2)(CCl3CO2)](2+). The O2 affinities can be qualitatively correlated with both the pKa value of the parent acetic or chloroacetic acid and the redox potential of the O2(2-)/O2˙(-) couple measured for the peroxide-bridged complexes. The redox potential varies between 510 mV (vs. Fc(0/+)) for the acetato-bridged complex to 696 mV for the trichloroacetato-bridged system. Despite the clear difference in reactivity in solution, there are no clear trends which can be correlated to O2 affinity in the O-O bond lengths in the X-ray crystal structures at 180 K (1.415(4)-1.424(2) Å) or in the frequencies of the peroxido O-O stretch in the solid-state resonance Raman spectra at 298 K (830-836 cm(-1)). Using density functional theory calculations, we conclude that the Co(II) atoms of the deoxy complexes coordinate solvent molecules as auxiliary ligands and that a conformation change of the ligand is involved in the reversible O2 binding process. The alternative of five coordination in the deoxy Co(II) complexes is therefore seen as less likely. The crystal structure and p(O2)50% are also reported for the 1-naphthoato-bridged oxy complex [Co2(bpbp)(O2)(C10H7O2)](2+), and the O2 binding affinity in that case is also qualitatively consistent with the expectation from the pKa of the parent 1-naphthoic acid.
Highlights
Reversible dioxygen binding is a life-supporting process for respiring organisms carried out by three classes of metalloproteins: hemoglobin, hemerythrin, and hemocyanin, the latter two having dimetallic active sites
We report here a systematic study of the electronic effects of the supporting bridging carboxylato co-ligand on the O2 affinity of the deoxy forms of the series of complexes which include those shown in Scheme 1
Density functional theory (DFT) calculations suggest that the deoxygenated complexes have a pseudo octahedral coordination environment completed by the coordination of two solvent molecules
Summary
Reversible dioxygen binding is a life-supporting process for respiring organisms carried out by three classes of metalloproteins: hemoglobin, hemerythrin, and hemocyanin, the latter two having dimetallic active sites. The reversible binding process is observed in methanol or acetonitrile solution by warming the oxy complexes in order to effect the dark brown to pink colour change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.