Abstract

ABSTRACTThe combination of directional solidification and selective dissolution was applied to fabricate tungsten (W) wires and porous NiAl matrix. A NiAl–W pseudobinary eutectic alloy with 1.5 at.% tungsten was directionally solidified in a Bridgman-type oven at 1700°C. Results confirmed that the relationships of the growth rate with the interfibrous spacing and diameter of W fibrous phases in the directionally solidified samples are in accordance with the Jackson and Hunt (J−H) model. Afterward, the NiAl matrix was selectively dissolved in an HCl:H2O2 solution to reveal W wires, which present various three-dimensional (3D) morphologies at different growth rates. The W fibrous phases in the NiAl–W alloy samples were then selectively removed with a mixed etchant of ammonium acetate to form a porous NiAl matrix at a constant potential. Dynamic corrosion curves revealed that etching W from the NiAl matrix was inhibited after 2–3 h. The porous structures of NiAl after removing W phases are linked to the 3D morphologies of W fibrous phases embedded in the NiAl matrix. The aspect ratio of W wires and the structures of porous NiAl can be adjusted by selecting the process parameters of this combined technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call