Abstract

Inherent processes in coal gasification plants produce hazardous hydrogen sulfide (H2S), which must be continuously and efficiently detected and removed before the fuel is used for power generation. An attempt has been made in this work to fabricate tungsten oxide (WO3) thin films by radio-frequency reactive magnetron-sputter deposition. The impetus being the use of WO3 films for H2S sensors in coal gasification plants. The effect of growth temperature, which is varied in the range of 30–500 °C, on the growth and microstructure of WO3 thin films is investigated. Characterizations made using scanning electron microscopy (SEM) and x-ray diffraction (XRD) indicate that the effect of temperature is significant on the microstructure of WO3 films. XRD and SEM results indicate that the WO3 films grown at room temperature are amorphous, whereas films grown at higher temperatures are nanocrystalline. The average grain-size increases with increasing temperature. WO3 films exhibit smooth morphology at growth temperatures ≤300 °C while relatively rough at >300 °C. The analyses indicate that the nanocrystalline WO3 films grown at 100–300 °C could be the potential candidates for H2S sensor development for application in coal gasification systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.