Abstract

AbstractContrary to the general “greening of the Arctic”, the Siberian Indigirka Lowlands show strong “browning” (a decrease in the Normalized Difference Vegetation Index or “NDVI”) in various recent satellite records. Since greening and browning are generally indicative of increases and losses in photosynthetically active biomass, this browning trend may have implications for the carbon balance and vegetation of this Arctic tundra region. To explore potential mechanisms responsible for this trend break from general Arctic greening, we studied timeseries of Landsat summer maximum NDVI, weather data, and high‐resolution maps of vegetation compositional change, topography, geomorphology and hydrology. We find that a significant proportion of browning (lower summer NDVI) is explained by moisture dynamics, with high snow depths and resulting floods as well as summer drought coinciding with low NDVI. Relations between seasonal weather variables and NDVI are spatially heterogeneous, with floodplains, drained thaw lake basins and Yedoma ridges showing different patterns of association with weather variables. Low summer NDVI after high snowfall was particularly evident in floodplains, likely explained by early summer floods. Local small‐scale vegetation changes explained only small amounts of variance in browning rates in Landsat NDVI. Local expansion of Sphagnum vegetation in particular may have contributed to recent browning of our study site, but higher resolution NDVI timeseries are necessary to accurately constrain the role of small‐scale vegetation shifts. Overall, associations identified in this study suggest that future increases in Arctic precipitation variability and extremes may limit tundra greening, but to different extents even across comparatively small topographical contrasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.