Abstract
AbstractSmoke from wildland fires contains more diverse, viable microbes than typical ambient air, yet little is known about the sources and sinks of smoke‐borne microorganisms. Data from molecular‐based surveys suggest that smoke‐borne microorganisms originate from material associated with the vegetation and underlying soils that becomes aerosolized during combustion, however, the sources of microbes in smoke have not yet been experimentally assessed. To elucidate this link, we studied high‐intensity forest fires in the Fishlake National Forest, Utah, USA and applied source‐sink modeling to assemblages of 16S ribosomal RNA (rRNA) gene sequences recovered from samples of smoke, vegetation, and soil. Our results suggest that 70% of the bacterial taxa in smoke originated from the local aspen (Populus tremuloides) (33%) and soil (37%) communities. In comparison, 42% of bacteria in air sampled prior to the fires could be attributed to these terrestrial sources. When the bacterial assemblages in smoke were modeled as sources to the local communities, they contributed an average of 25% to the terrestrial sinks versus an estimated contribution of <4% from ambient air. Our results provide support for the role of wildland fire in bacterial dispersal and the working hypothesis that smoke is an environmental reservoir of microbes for receiving ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.