Abstract

This paper investigates the dynamic properties of one, two and three-dimensional tensegrity-based periodic structures introduced in Rimoli and Pal (2017), which are here termed as tensegrity beams, plates and solids, respectively. We study their linear wave propagation properties and show that in each case, these properties can be significantly altered by the prestrain in the cables. As the prestrain is varied, we observe jumps in the wave velocities at two critical prestrain values, which define transitions between the three distinct phases of these structural assemblies. At low cable prestrains, the wave speeds are zero as the lattices have zero effective stiffness. At moderate prestrains, the wave speed is nonzero and finally, at prestrain levels where the bars buckle, the wave speeds change to a near constant value. Dispersion analysis on these beams, plates and solids reveal unique properties such as very low wave velocities compared to their constituent material and the existence of flat bands at low frequencies. Furthermore, we find that shear waves travel faster than longitudinal waves in tensegrity solids in a range of cable prestrains. Finally, we verify the key observations through detailed numerical simulations on finite tensegrity solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.