Abstract

We propose the generation of a widely tunable UV-to-IR frequency comb by high-order sideband generation (HSB) spectrum emitted from semiconductors. In our theoretical simulations, we demonstrate the high-order sideband signals of two series (2m Ωseed + (2n + 1) ωdriver, and (2m + 1) Ωseed + 2 nωdriver ), where m and n are integers of a seed pulse and a driver laser frequency, respectively. The simulations also reveal the intensity of HSB scale with the driver laser power, both perturbatively and non-perturbatively. We find that the harmonic position and spacing of the high-order sideband emission can be controlled by varying the seed pulse and driver photon energies. In the experiment, we applied a visible ( ℏΩseed = 3.1 eV, ∼400 nm) seed pulse and mid-infrared (MIR, ℏωdriver = 0.4 eV, 3.1 μm) driver pulses to ZnSe target. Our experimental observations confirmed the UV (4.7 eV, 263 nm and 3.9 eV, 317 nm) HSB generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.