Abstract

It is quite important to enhance and control the optomechanically induced high-order sideband generation to achieve low-power optical comb and high-sensitivity sensing with an integratable structure. Here we present and analyze a proposal for enhancement and manipulation of optical nonlinearity and high-order sideband generation in a hybrid atom-cavity optomechanical system that is coherently driven by a bichromatic input field consisting of a control field and a probe field and works beyond the perturbative regime. Our numerical analysis with experimentally achievable parameters confirms that robust high-order sideband generation and typical spectral structures with non-perturbative features can be created even under weak driven fields. The dependence of the high-order sideband generation on the atomic parameters are also discussed in detail, including the decay rate of the atoms and the coupling parameter between the atoms and the cavity field. We show that the cutoff order as well as the amplitude of the higher order sidebands can be well tuned by the atomic coupling strength and the atomic decay rate. The proposed mechanism of enhancing optical nonlinearity is quite general and can be adopted to optomechanical systems with different types of cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call