Abstract

Water-soluble thermoresponsive polymers present either upper critical solution temperature (UCST) or lower critical solution temperature (LCST) depending on the location of their miscibility range with water at high temperatures or at low temperatures. Compared with LCST polymers, the water-soluble UCST polymers are still less explored until now. In this work three copolymers of P(AAm-co-GAA) were synthesized by copolymerizing two acrylamide monomers, acrylamide (AAm) and acrylamide functionalized with natural glycyrrhetinic acid (GAA), using reversible addition-fragmentation chain transfer (RAFT) polymerization. These copolymers exhibited the typical UCST thermoresponsive behavior, and their phase transition temperatures could be easily tuned to around 37 °C for potential biological applications. Moreover, the UCST of P(AAm-co-GAA) can be adjusted not only by the content of glycyrrhetinic acid (GA) and polymer concentrations, but also by the host-guest interactions between GA and cyclodextrins (β- and γ-CD). The suitable value of UCST and the biocompatible nature of GA and CDs may endow these copolymers with practical applications in biomedical chemistry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call