Abstract

Nonionic double thermoresponsive diblock copolymers with both upper critical solution temperature (UCST) and lower critical solution temperature (LCST) phase transitions are synthesized via eco-friendly photoiniferter reversible addition-fragmentation chain transfer polymerization. While the biocompatible random copolymer of di(ethylene glycol) methyl ether methacrylate and oligo(ethylene glycol) methacrylate accounts for the LCST transition, the block of polymethacrylamide from an easily accessible monomer with low health hazard is responsible for the UCST transition. Temperature-dependent dynamic light scattering measurements confirm the formation of micellar aggregates in water at the temperatures below UCST- and above LCST-type cloud points. Additionally, the temperature interval between UCST and LCST, where both blocks are dissolved, can be tailored by varying the comonomer ratio in the random copolymer block. With these unique advantages, the presented work introduces a new polymer system for the design of schizophrenic polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.