Abstract
One of the most peculiar characteristics of the insulator-to-metal transition (MIT) in vanadium dioxide (VO2) material is its broadband response, manifested by drastic electrical and dielectric properties changes between the insulator and metallic states on a very large frequency spectrum. We are presenting the characterization of the MIT in VO2 films over a wide range of the electromagnetic spectrum (75-110GHz, 0.1-1.4THz) and illustrate the materials’ capabilities for manipulating the electromagnetic radiation in the millimeter-waves and THz domains. We demonstrate the possibility of realizing tunable THz devices by introducing this phase transition material as localized patterns in the structure of THz planar metamaterials. We designed, simulated and fabricated tunable VO2-based THz metamaterials devices which show significant variations in their THz transmission under the effect of thermal stimuli but also by applying an electrical voltage across the devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.