Abstract
The study of phonon polaritons in van der Waals materials at the nanoscale has gained significant attention in recent years due to its potential applications in nanophotonics. The unique properties of these materials, such as their ability to support sub-diffraction imaging, sensing, and hyperlenses, have made them a promising avenue for the development of new techniques in the field. Despite these advancements, there still exists a challenge in achieving dynamically reversible manipulation of phonon polaritons in these materials due to their insulating properties. In this study, we present experimental results on the reversible manipulation of anisotropic phonon polaritons in α-MoO3 on top of a VO2 film, a phase-change material known for its dramatic changes in dielectric properties between its insulating and metallic states. Our findings demonstrate that the engineered VO2 film enables a switch in the propagation of polaritons in the mid-infrared region by modifying the dielectric properties of the film through temperature changes. Our results represent a promising approach to effectively control the flow of light energy at the nanoscale and offer the potential for the design and fabrication of integrated, flat sub-diffraction polaritonic devices. This study adds to the growing body of work in the field of nanophotonics and highlights the importance of considering phase-change materials for the development of new techniques in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.