Abstract

Charged interface states are introduced by UV-ozone treatment of a polymer gate dielectric, parylene, prior to deposition of the organic semiconductor, pentacene, thereby modifying the organic field effect transistor (OFET) operation from enhancement to depletion mode. Quasistatic capacitance-voltage measurements and the corresponding current-voltage characteristics show that the threshold voltage VT and flatband voltage VFB can be shifted by over +50V, depending on the ozone exposure time. This work demonstrates that careful control of the semiconductor-insulator interface state densities is essential to VT and VFB control and the fabrication of reliable OFET integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.