Abstract

We report extremely large tunable thermal conductivity (k) in alkanes using inverse micellar templating and nanofillers. The thermal properties of n-hexadecane containing inverse micelles of different volume fractions (ϕ) have been studied during freezing and melting. The k enhancement between the solid and liquid phase in the presence of oleic acid, dioctyl sodium sulfosuccinate, and sorbitan oleate inverse micelles (size ∼1.5–6 nm) are found to be 185, 119, and 111%, respectively. Unlike the conventional nanofluids, the k enhancement in micellar templated alkanes is perfectly reversible under repeated thermal cycling owing to the monodispersity and nonaggregating nature of micelles. Our results suggest that during the first-order phase transition, the inverse micelles with highly packed linear chain surfactant are pushed to the intercrystal boundaries of alkanes, thereby reducing the interfacial thermal resistance. The k contrasts in surface modified graphite nanofibers and multiwalled carbon nanotube i...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.