Abstract

The thermal properties of composites based on polycarbonate (PC) filed with ultraviolet/ozone (UVO) treated multiwall carbon nanotubes (MWCNTs) in low limit (less than 0.01) volume fractions have been investigated. The composites were prepared in the form of films of relatively small thickness (23–33 μm) with random orientation of treated MWCNTs. Functionalization of MWCNTs has been confirmed through Fourier transform infrared measurements. Thermal conductivity was obtained by measuring both of thermal diffusivity and thermal effusivity using photoacoustic technique. The results reveal that the addition of UVO treated MWCNTs lead to enhance both the thermal diffusivity and thermal effusivity of the composites. Insertion of 0.95% MWCNTs into PC improves the thermal conductivity of the composites by ∼22%. This enhancement is reasonable using such low content of MWCNTs of moderate aspect ratio. The experimental results were analyzed using a simple model concerning some relevant parameters such as volume fractions, interfacial thermal resistance, aspect ratio, and nonstraightness of nanotubes. An interface thermal resistance in the low limit of about 2.1 × 10−8 m2K/W has been estimated. In the light of these results, the role of MWCNTs functionalization on the overall thermal transport properties of MWCNTs-polymer composites has been discussed. POLYM. COMPOS., 36:1242–1248, 2015. © 2014 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.