Abstract

Graphene plasmonics provides a powerful means to extend the reach of metasurface technology to the terahertz spectral region, with the distinct advantage of active tunability. Here we introduce a comprehensive design platform for the development of THz metasurfaces capable of complex wavefront manipulation functionalities, based on ribbon-shaped graphene plasmonic resonators combined with metallic antennas on a vertical cavity. Importantly, this approach is compatible with the electrical characteristics of graphene grown by chemical vapor deposition (CVD), which can provide the required mm-scale dimensions unlike higher-mobility exfoliated samples. We present a single device structure that can be electrically reconfigured to enable multiple functionalities with practical performance metrics, including tunable beam steering and focusing with variable numerical aperture. These capabilities are promising for a significant impact in a wide range of THz technologies for sensing, imaging, and future wireless communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.