Abstract

We consider optical systems with variable numerical aperture (NA) on the level of the Zernike coefficients of the correspondingly scalable pupil function. We thus present formulas for the Zernike coefficients and their first two derivatives as a function of the scaling factor ε ≤ 1, and we apply this to the Strehl ratio and its derivatives of NA-reduced optical systems. The formulas for the Zernike coefficients of NA-reduced optical systems are also useful for the forward calculation of point-spread functions and aberration retrieval within the Extended Nijboer–Zernike (ENZ) formalism for optical systems with reduced NA or systems that have a central obstruction. Thus, we retrieve a Gaussian, comatic pupil function on an annular set from the intensity point-spread function in the focal region under high-NA conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.