Abstract

An in-depth study of metal assisted chemical etching (MACE) of p-type c-Si in HF/H2O2 aqueous solutions using Pt nanoparticles as catalysts is presented. Combination of cyclic voltammetry, open circuit measurements, chronoamperometry, impedance spectroscopy, and 2D band bending modeling of the metal/semiconductor/electrolyte interfaces at the nanoscale and under different etching conditions allows gaining physical insights into this system. Additionally, in an attempt to mimic the etching conditions, the modeling has been performed with a positively biased nanoparticle buried in the Si substrate. Following these findings, the application of an external polarization during etching is introduced as a novel efficient approach for achieving straightforward control of the pore morphology by acting upon the band bending at the Si/electrolyte junction. In this way, nanostructures ranging from straight mesopores to cone-shaped macropores are obtained as the Si sample is biased from negative to positive potentials. Remarkably, macroscopic cone-shaped pores in the 1-5 μm size range with a high aspect ratio (L/W ∼ 1.6) are obtained by this method. This morphology leads to a reduction of the surface reflectance below 5% over the entire VIS-NIR domain, which outperforms macrostructures made by state of the art texturization techniques for Si solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.