Abstract

Metal-assisted chemical etching (MACE) is a site-selective etching process produced by a catalyst reaction at the interface between noble metal and silicon. This paper aims to make clear the applicability of sphere lithography and MACE to the fabrication of high aspect ratio Si nanostructures. The capacity to control the etched profiles and the scale extension are investigated. First, silica particles (e.g. φ1 μm) were self-assembled on a Si substrate. After the reduction of particle size via argon ion bombardment, a gold layer was deposited using the particles as a mask. The substrate was then etched with a mixture of hydrofluoric acid and hydrogen peroxide. It was found that an array of nanopillars with a regular pitch, good separation, and an aspect ratio of about 52 was produced. The effects of MACE conditions on final profiles were clarified. A limitation of this approach is the small (several millimeters) area fabricated due to the dependence on the vacuum technique (ion bombardment, Au deposition), and the size of the area limits its practical applications. Thus, Ag nanoparticles (e.g. φ150 nm) were applied. The relationship between the concentration of the Ag suspension, the Ag assembled layer, and the morphology of MACE structures was made clear. A spray method was applied to extend the deposited area of Ag particles up to φ100 mm. Finally, the effects of the cross-sectional profile on the contact angle of a water droplet were examined. By applying a high aspect ratio nanostructure on the substrate, the water contact angle increased up to 153 degrees while that without the structure is 58 degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call