Abstract

Control of a single ionic charge state by altering the number of bound electrons has been considered as an ultimate testbed for atomic charge-induced interactions and manipulations, and such subject has been studied in artificially deposited objects on thin insulating layers. We demonstrate that an entire layer of controllable atomic charges on a periodic lattice can be obtained by cleaving metallic Co1/3NbS2, an intercalated transition metal dichalcogenide. We identified a metastable charge state of Co with a different valence and manipulated atomic charges to form a linear chain of the metastable charge state. Density functional theory investigation reveals that the charge state is stable due to a modified crystal field at the surface despite the coupling between NbS2 and Co via a1g orbitals. The idea can be generalized to other combinations of intercalants and base matrices, suggesting that they can be a new platform to explore single-atom-operational 2D electronics/spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.