Abstract

The complex oxide heterostructures such as LaAlO3/SrTiO3 (LAO/STO) interface are paradigmatic platforms to explore emerging multi-degrees of freedom coupling and the associated exotic phenomena. In this study, we reveal the effects of multiorbital and magnetic ordering on Rashba spin-orbit coupling (SOC) at the LAO/STO (001) interface. Based on first-principles calculations, we show that the Rashba spin splitting near the conduction band edge can be tuned substantially by the interfacial insulator-metal transition due to the multiorbital effect of the lowest t_2g bands. We further unravel a competition between Rashba SOC and intrinsic magnetism, in which the Rashba SOC induced spin polarization is suppressed by the interfacial magnetic ordering. These results deepen our understanding of intricate electronic and magnetic reconstruction at the perovskite oxide interfaces and shed light on the engineering of oxide heterostructures for all-oxides-based spintronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.