Abstract

ObjectivesThis study targets to assess the remineralization capability of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). MethodsDentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanohardness, Masson's trichrome staining microscopy, and Raman analysis. ResultsDentin surfaces treated with TDg-NPs and load cycled produced higher nanohardness than the rest of the groups at the hybrid layer. At the bottom of the hybrid layer, all samples treated with TDg-NPs showed higher nanohardness than the rest of the groups. Active remineralization underneath the hybrid layer was detected in all groups after TDg application and load cycling, inducting new dentinal tubuli formation. After thermocycling, remineralization at the hybrid layer was not evidenced in the absence of NPs. Raman analysis showed increase mineralization, enriched carbonate apatite formation, and improved crosslinking and scaffolding of the collagen. ConclusionsMechanical loading on the specimens obtained after TDg-NPs dentin infiltration inducts an increase of mineralization at the resin/dentin interface, indicating remineralization of peritubular and intertubular dentin with augmented crystallographic maturity in crystals. Enriched collagen quality was produced, generating an adequate matrix organization to promote apatite nucleation, after tideglusib infiltration. Clinical significanceAt the present research, it has been proved the creation of reparative dentin, at the resin-dentin interface, after tideglusib dentin infiltration. Chemical stability, to favor integrity of the resin-dentin interface, is warranted in the presence of the TDg-NPs in the demineralized dentin collagen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.