Abstract
The tunable spiral nanowire metamaterial design at optical frequency is presented, and the surface polaritons are theoretically studied. It was found that the dispersions of the polaritons could be tuned by varying physical dimensions of the spiral nanowire metamaterial. This geometry is unique. Doing so, one may dynamically control the properties of surface polaritons. In addition, the Ferrell–Berreman modes can be excited that is impossible with the regular nanowire metamaterials having the circular cross-section of the nanowires. Herein, the presence of Ferrell–Berreman branches is confirmed by the performed analysis of the metamaterial band structure. It is worthwhile noting, that existence of Ferrell–Berreman modes is possible without epsilon-near-zero (ENZ) regime. The design of devices where Ferrell–Berreman modes can be exploited for practical applications ranging from plasmonic sensing to imaging and absorption enhancement is possible because of the propagation constant revealing subtle microscopic resonances.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.