Abstract

We investigate radiation of a dipole at or below the interface of (an)isotropic Epsilon Near Zero (ENZ) media, akin to the classic problem of a dipole above a dielectric half-space. To this end, the radiation patterns of dipoles at the interface of air and a general anisotropic medium (or immersed inside the medium) are derived using the Lorentz reciprocity method. By using an ENZ half-space, air takes on the role of the denser medium. Thus we obtain shaped radiation patterns in air which were only previously attainable inside the dielectric half-space. We then follow the early work of Collin on anisotropic artiflcial dielectrics which readily enables the implementation of practical anisotropic ENZs by simply stacking sub-wavelength periodic bi-layers of metal and dielectric at optical frequencies. We show that when such a realistic anisotropic ENZ has a low longitudinal permittivity, the desired shaped radiation patterns are achieved in air. In such cases the radiation is also much stronger in air than in the ENZ media, as air is the denser medium. Moreover, we investigate the subtle difierences of the dipolar patterns when the anisotropic ENZ dispersion is either elliptic or hyperbolic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call