Abstract

We report on the self-assembly of large-area, highly ordered 2D superlattices of alkanethiolate-stabilized gold nanoparticles ( approximately 10.5 nm in core diameter) onto quartz substrates with varying lattice constants, which can be controlled by the alkyl chain lengths, ranging from C12 (1-dodecanethiolate), C14 (1-tetradecanethiolate), C16 (1-hexadecanethiolate), to C18 (1-octadecanethiolate). These 2D nanoparticle superlattices exhibit strong collective surface plasmon resonance that is tunable via the near-field coupling of adjacent nanoparticles. The approach presented here provides a unique and viable means of building artificial "plasmonic crystals" with precisely designed optical properties, which can be useful for the emerging fields of plasmonics, such as subwavelength integrated optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call