Abstract
Using a plasmonic graphene ring resonator of resonant frequency 10.38 THz coupled to a plasmonic graphene waveguide, we design a lab-on-a-chip optophoresis system that can function as an efficient plasmonic force switch. Finite difference time domain numerical simulations reveal that an appropriate choice of chemical potentials of the waveguide and ring resonator keeps the proposed structure in on-resonance condition, enabling the system to selectively trap a nanoparticle. Moreover, a change of 250 meV in the ring chemical potential (i.e., equivalent to 2.029 V change in the corresponding applied bias) switches the structure to a nearly perfect off-resonance condition, releasing the trapped particle. The equivalent plasmonic switch ON/OFF ratio at the waveguide output is -15.519 dB. The designed system has the capability of trapping, sorting, controlling, and separating PS nanoparticles of diameters ≥30 nm with a THz source intensity of 14.78 mW/µm2 and ≥22 nm with 29.33 mW/µm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.