Abstract

In terms of the law of momentum conservation, the optical pulling force (OPF) is a counterintuitive phenomenon for optical manipulation. We investigate analytically and numerically the tunable OPF exerted on the low refractive index nanoparticle (NP) in a hybrid dimer system when it is illuminated by a plane wave based on the coupled dipole approximation method and the finite-difference time-domain method, respectively. The underlying physical mechanism relies on the near-field electromagnetic coupling between the low refractive index dielectric NP and the plasmonic NP. We further evaluate the dependence of the OPF on the geometrical parameters of the system. It is also numerically demonstrated that a Gaussian beam can be used to achieve pure OPF with no transverse force component. The proposed OPF offers an additional degree of freedom for optical sorting, transport, and trapping of NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.