Abstract

A dynamically wavelength tunable multispectral plasmon induced transparency (PIT) device based on graphene metamaterials, which is composed of periodically patterned graphene double layers separated by a dielectric layer, is proposed theoretically and numerically in the terahertz frequency range. Considering the near-field coupling of different graphene layers and the bright-dark mode coupling in the same graphene layer, the coupled Lorentz oscillator model is adapted to explain the physical mechanism of multispectral EIT-like responses. The simulated transmission based on the finite-difference time-domain (FDTD) solutions indicates that the shifting and depth of the EIT resonances in multiple PIT windows are controlled by different geometrical parameters and Fermi energies distributions. A design scheme with graphene integration is employed, which allows independent tuning of resonance frequencies by electrostatically changing the Fermi energies of graphene double layer. Active control of the multispectral EIT-like responses enables the proposed device to be widely applied in optical information processing as tunable sensors, switches, and filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call