Abstract
Graphene has attracted much attention due to its unique optical properties as a new kind of plasmonic metamaterial in the terahertz regime. Here, we theoretically investigated a wavelength tunable plasmon induced transparency (PIT) device based on graphene metamaterials which is composed of periodically patterned graphene nanostructures. The interactions and coupling between plasmonic modes are investigated in detail by analyzing the field distributions and spectral responses. The coupled Lorentz oscillator models are used to explain the physical mechanism of the PIT. The finite-difference-time-domain (FDTD) method is used to investigate the tunable properties of the structure. It is shown that the coupling strength between the bright mode and dark mode is tuned by the coupling distance between the elements of the proposed structure. By varying the Fermi level of graphene, the PIT resonant frequency can be dynamically tuned. Furthermore, we demonstrate numerically that tunable slow light can be realized in our patterned graphene metamaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.