Abstract

Surface plasmon polaritons (SPPs) have appealing features such as tighter spatial confinement and higher local field intensity. Manipulation of surface plasmon polaritons on metal/dielectric interface is an important aspect in the achievement of integrated plasmonic circuit beyond the diffraction limit. Here, we introduce a design of pin cushion structure and a holographic groove pattern structure for tunable multi-port SPPs excitation and focusing. Free space light is coupled into SPPs through momentum matching conditions. Both nanostructures are capable of tunably controlling of SPPs depending on the incident polarizations, while the holographic method provides more flexibility of wavelength-dependent excitations. Furthermore, a quantitative method is applied to calculate the efficiencies of excitation for both nanostructures under different conditions, including radially polarized incident beams. These results can work as a guidance and be helpful to further choice of the suitable design strategies for variable plasmonic applications such as beam splitter, on-chip spectroscopy, and plasmonic detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.