Abstract

Manipulation of surface plasmon polaritons (SPPs) on metal surfaces is important for constructing ultracompact integrated micro/nano optical devices and systems. We employ the method of surface electromagnetic wave holography (SWH) to design holographic groove patterns for managing the transport of broadband SPPs on metal surface. Several sets of groove patterns corresponding to different wavelengths are etched on the same region on metal surface to form a broadband SPP hologram. The incident SPPs are scattered by the composite hologram and interfere with each other to focus at different or the same positions for SPPs of different wavelengths. Finite-difference time-domain simulations show that broadband demultiplexing of SPPs is realized by the designed plasmonic holographic structures. In addition, the broadband SPPs can be focused to a pre-designated spot by a designed plasmonic hologram and as a result focusing of an ultrashort plasmonic pulse can be achieved. The results show that the SWH can successfully handle design of plasmonic holographic structures for SPPs wavelength management on metal surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call