Abstract
We investigate and experimentally validate the concept of bandgap tuning in a locally resonant metamaterial beam exploiting shape memory alloy (SMA) resonators. The underlying mechanism is based on the difference between the martensitic phase (low temperature) and austenitic phase (high temperature) elastic moduli of the resonators, enabling a significant shift of the bandgap for a sufficient temperature change. Experimental validations are presented for a base-excited locally resonant metamaterial beam with SMA resonators following a brief theoretical background. It is shown that the lower bound of the bandgap as well as the bandwidth can be increased by 15% as the temperature is increased from 25 °C to 45 °C for the specific SMAs used in this work for concept demonstration. The change in the bandgap lower bound frequency and its bandwidth is governed by the square root of the fully austenitic to fully martensitic elastic moduli ratio, and it could be as high as 70% or more for other SMAs reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.